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ABSTRACT

Three methods for detecting and characterizing structure in point data, such as that generated by redshift surveys, are
described: classification using self-organizing maps, segmentation using Bayesian blocks, and density estimation
using adaptive kernels. The first two methods are new, and allow detection and characterization of structures of
arbitrary shape and at a wide range of spatial scales. These methods should elucidate not only clusters, but also the
more distributed, wide-ranging filaments and sheets, and further allow the possibility of detecting and characterizing
an even broader class of shapes. The methods are demonstrated and compared in application to three data sets:
a carefully selected volume-limited sample from the Sloan Digital Sky Survey redshift data, a similarly selected
sample from the Millennium Simulation, and a set of points independently drawn from a uniform probability
distribution—a so-called Poisson distribution. We demonstrate a few of the many ways in which these methods
elucidate large-scale structure in the distribution of galaxies in the nearby universe.
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1. INTRODUCTION AND HISTORICAL BACKGROUND

By the mid-1700s, telescopes began to be used to catalog
large areas of the night sky. It quickly became clear that the
distribution of objects is not homogeneous. Wright (1750) was
the first to note that our Sun appears to reside in a disk of
stars while Messier (1781) was probably the first to detect a
cluster of galaxies. Of the 103 objects in Messier’s catalog
13 are actually part of the Virgo cluster. Of course there was
no distinction between galactic and extra-galactic nebulae at
this early stage, but an overall inhomogeneity was obvious.
In his larger catalog Herschel (1784) discovered the Coma
cluster along with voids and other congregations of matter.
By 1847 his son John Herschel was able to use his larger
catalog of 4000 nebular objects (Herschel 1847) to quantify
the inhomogeneity for the first time using counts-in-cells (15′
in right ascension by 3◦ declination), confirming Messier’s
discovery of Virgo with the addition of several other clusters
and even superclusters of galaxies as we understand them today.
Huggins (1864) measurements of nebular spectra would open
the door to categorizing these strange objects, but not until 1925
would it be confirmed that the spiral nebulae were in fact external
to the Milky Way (Hubble 1925) and their distribution on the
night sky better understood.

Using the Shapley–Ames, Harvard, and Hubble surveys of
galaxies in the early 1930s Shapley (1933), Bok (1934), Hubble
(1936), and Mowbray (1938) essentially demonstrated that
galaxies to at least 18th magnitude are not randomly distributed.
Also around this period Hubble (1934) used galaxy counts-in-
cells to find for the first time that the distribution of galaxies is
log-normal.

By the 1950s, the Lick Catalog of galaxy counts (reaching
over 1 million and superseding all previous catalogs in scale)
could be used to statistically characterize the galaxy distribu-

tion. Neyman & Scott (1952, 1959) assumed that “Galaxies
occur only in clusters” and built a multi-parameter model to
characterize the distribution of galaxies. Then for the first time
a number of authors attempted to use the two-point correlation
function to characterize the galaxy distribution (Limber 1953,
1954; Layzer 1956; Limber 1957; Neyman 1962) using the Lick
survey. According to Saslaw (2000), at about the same time “His
(Gamow 1954) was probably the first claim that quantitative de-
tails of the observed galaxy distribution (Rubin 1954) supported
a specific physical theory of cosmogony.”

Characterizing clusters of galaxies from the National
Geographic Society—Palomar Observatory Sky Survey (POSS),
Abell (1958) used counts in equal-area cells to show that galax-
ies are more strongly clustered than a Poisson4 distribution. He
found the maximum clustering scale to be about 45 Mpc (Ho =
100 km s−1 Mpc−1), the scale for superclusters. Zwicky (1957)
also used the POSS survey but came to the conclusion that clus-
tering stops at the scale of clusters of galaxies and is uniform
above that scale. But it was clear from other observations that
there are superclusters of galaxies (de Vaucouleurs 1953, 1958)
present in the local universe.

Using the new Lick Observatory catalog of Shane & Wirtanen
(1967) for galaxies brighter than m = 19, Totsuji & Kihara
(1969) realized for the first time that the two-point correlation
function for the spatial distribution of galaxies follows the power
law

g(r) = (ro/r)s (1)

where r is the distance between galaxies, ro = 4.7 Mpc, and the
index s was estimated to be about 1.8. The results were later

4 For reasons described below in Section 3, we prefer to call such random
processes as uniformly and independently distributed, more directly indicating
their fundamental nature. However, the term Poisson is entrenched in much of
the literature.
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confirmed by other groups using the same survey (e.g., Groth &
Peebles 1977) with very similar results (s = 1.77 instead of 1.8,
but with the same ro). Both Martinez & Saar (2001) and Saslaw
(2000) do a nice job of reviewing the progress of the use of
correlation functions for galaxy distributions. Szapudi & Szalay
(1998) is one of the later developments proposing Landy–Szalay
(Landy & Szalay 1993) estimators for higher order correlation
functions. They claim that it is the most natural estimator (see,
e.g., Peebles & Hauser 1974).

Turner & Gott (1976) used positions and magnitudes from
1087 galaxies from the Catalog of Galaxies and Clusters of
Galaxies (Zwicky et al. 1961) and applied a well-defined,
objective group identification procedure in contrast to the
somewhat subjective criteria used previously (e.g., Holmberg
1937; Reiz 1941; de Vaucouleurs 1975; Sandage & Tammann
1975; Gregory & Thompson 1978). Later these workers applied
the same methodology to a small N-body simulation (Turner
et al. 1979). In essence they attempted to estimate the surface
density of galaxies with volume density enhancements �10,
as suggested by de Vaucouleurs (1975) at that time. They
admitted that their catalog would have contamination from
foreground and background objects since they did not have
redshift information. Nonetheless they assigned 737 galaxies
to 103 separate groups and 350 to the field (see Figure 2 in
Turner & Gott 1976). The largest group contained 238 members,
including Virgo cluster members.

Oort (1983) reviews some of the earliest results on large-
scale structure (LSS) analyses, but also points out the problem
with using the increasingly popular correlation function (e.g.,
Peebles 1980) to characterize all structures in the universe:
“The correlation function has proved to be extremely useful in
providing such a unified description of the clumpiness. However,
it is not suitable for describing the very long filamentary or flat
structures that we encounter in superclusters, nor does it describe
the large voids between these superclusters.”

The deficiencies of the correlation function led to the use
of methods like percolation analysis and minimal spanning
trees (MSTs) in the 1980s. For example, Zeldovich et al.
(1982), Shandarin (1983), and Einasto et al. (1984) were some
of the first to attempt to quantify galaxy clustering using
percolation analysis. These groups had the belief that it could
appropriately quantify the pancake and filamentary structures of
the universe in models of structure formation (e.g., Zeldovich
1970). However, Dekel & West (1985) pointed out a number of
problems with using percolation analysis and stated that they
are in fact not sensitive to the “pancake” structures expected
from the calculations of Zeldovich (1970). They recommended a
volume-limited (VL) sample an order of magnitude denser than
the then state-of-the-art Center for Astrophysics survey (Huchra
et al. 1983); but even after more dense samples were obtained
the validity of the method as a tool for analyzing observational
data remained in doubt. On the other hand, it was utilized
for comparing N-body simulations with observational data and
Poisson (uniform) distributions. More recent percolation work
(Pandey & Bharadwaj 2005) has used the SDSS Data Release
One (Abazajian et al. 2003) in a two-dimensional projection
to demonstrate that filaments are the dominant pattern in the
galaxy distribution.

One now understands the limitations of second-order statis-
tical quantities, such as correlation functions and power spec-
tra, by noting that they discard phase information. As perco-
lation analysis demonstrated the application of more powerful
techniques allowing the identification of sheet and filamentary

structure in the LSS of the universe, at nearly the same time
the MST took hold as a filament-finding algorithm. The MST
is a pattern recognition technique borrowed from graph theory
which gives an objective measure of the connectedness of a
set of points. Barrow et al. (1985) were the first to apply the
MST to galaxy clustering using the two-dimensional catalog of
Zwicky et al. (1961), the three-dimensional catalog of the Cen-
ter for Astrophysics Redshift Survey (Huchra et al. 1983, here-
after CFA), and the N-body simulations of Gott et al. (1979).
These authors demonstrated how markedly different both the
observational data and N-body simulations are from a Pois-
son distribution. Advances in the MST technique have been
applied to large-scale structure analysis by a number of other
groups in subsequent years (Pearson & Coles 1995; Krzewina
& Saslaw 1996; Ueda & Itoh 1997; Doroshkevich et al. 2004;
Colberg 2007). The percolation and MST methods are related to
friends-of-friends (FoF) techniques, which were first applied to
the three-dimensional CFA survey by Press & Davis (1982) and
Huchra & Geller (1982) and later to simulation data by Croft &
Efstathiou (1994) and even larger samples of galaxies to obtain
catalogs of groups (Ramella et al. 1997). The FoF technique has
even been expanded for use with photometric redshift surveys of
galaxies (Botzler et al. 2004). There are additional ways to use
the Nth nearest neighbor distances to estimate the underlying
density field (e.g., Gomez et al. 1998; Dressler 1980). Another
approach is to use all N nearest neighbors (Ivezić et al. 2005)
within a Bayesian probability framework.

It should surprise no one that wavelets, used to characterize
structure in large galaxy catalogs, were applied in other two-
dimensional (e.g., Slezak et al. 1990) cases, and in the three-
dimensional case (e.g., Slezak et al. 1993). What is surprising is
that they have not been utilized more extensively in the largest
modern redshift surveys of galaxies (e.g., Martinez et al. 2005).
Paredes et al. (1995) have done a nice job of comparing the
relative merits of MST, FoFs, and wavelets as cluster finding
algorithms, although there have been significant developments
since.

By the late 1980s and early 1990s there was interest in at-
tempting to measure the topology of large-scale structure from
observational data and various models (Gott et al. 1986, 1987;
Hamilton et al. 1986; Park & Gott 1991; Beaky et al. 1992).
This was done using the genus statistic which is related to the
fourth Minkowski functional (Stoyan et al. 1985). These kinds
of measures should give an idea of the topological connected-
ness of systems of points after they have been smoothed by some
kind of filter. In the end, this method allowed one to distinguish
among different galaxy distributions by obtaining the genus, us-
ing isodensity surfaces at different density levels. These clearly
require some kind of smoothing, but the choice of levels at which
to apply smoothing is not obvious. This is important because
oversmoothing tends to create a positive genus, while under-
smoothing creates a negative one. Nonetheless these problems
have not stopped groups from applying these techniques to the
largest available redshift surveys of galaxies available at the
moment, such as QDOT, CfA2, PSCz, 2dFGRS, and the SDSS
(Moore et al. 1992; Vogeley et al. 1994; Canavezes, et al. 1998;
James et al. 2007; Gott et al. 2009). Sheth et al. (2003) used
Minkowski Functionals combined with percolation analysis to
compare the supercluster-void network in three cosmological
models and that of the present epoch. Some of the latest studies
(Gott et al. 2009; Choi et al. 2010) seem to confirm a sponge-
like topology and is consistent with the Gaussian random
phase initial conditions expected from inflation. Recent work

2



The Astrophysical Journal, 727:48 (32pp), 2011 January 20 Way, Gazis, & Scargle

(Aragón-Calvo et al. 2010; Zhang et al. 2010) has attempted
to calculate Minkowski functionals using Delaunay tessellation
to calculate the isodensity surfaces to try and get around the
smoothing problem mentioned above.

Voronoi tessellation was applied for the first time to study
the structure of the universe with the pioneering works of Mat-
suda & Shima (1984) and Icke & van de Weygaert (1987). This
was extended to three-dimensional distributions by Yoshioka
& Ikeuchi (1989) and van de Weygaert (1994). In the mean-
time, Voronoi tessellation-based methods have been used to
study the clustering of galaxies by many for differing purposes
(e.g., Coles 1990; Ikeuchi & Turner 1991; Kim et al. 1999;
Ramella et al. 1999, 2001; Pizarro et al. 2006; Aragón-Calvo
et al. 2007; Soares-Santos et al. 2010). For example, Ebeling &
Wiedenmann (1993) used a high-density selection in the dis-
tribution of Voronoi volumes, coupled with the adjacency in-
formation, to develop a method for source detection in two-
dimensional point maps. This approach has been adapted into
analysis toolkits for Chandra X-ray source identification; see,
e.g., Diehl & Statler (2006) for details. Melnyk et al. (2006)
applied a similar threshold method to study the distribution of
7000 local supercluster galaxies. See Elyiv et al. (2009) for dis-
cussion of an extension of Voronoi tessellation to more complex
neighbor relationships. See Cappellari (2009) regarding various
applications. Two of our methods utilize this procedure, and
details are found below in Sections 3 and 4.2.

The pace of development of innovative methods for char-
acterizing LSS has not diminished much in recent years. Two
recent methods first generate a continuous density field from
the three-dimensional point distribution and then identify struc-
tures via similar means. Aragón-Calvo et al. (2007) use the
“Delaunay Tessellation Field Estimator” (Schaap & van de
Weygaert 2000; Schaap 2007) and then rescale using isotropic
Gaussian filters to create the continuous field, while Bond et al.
(2010) use a fixed-width Gaussian kernel to estimate the den-
sity field. They both then compute the matrix of second spatial
derivatives to yield the so-called Hessian matrix. The eigenval-
ues and eigenfunctions of this continuous matrix are evaluated
at the locations of the galaxies yielding clouds of points in what
Bond et al. (2010) call λ-space. Bond et al. (2010) demonstrate
the relationship between the shapes of these clouds and the
morphology of the corresponding structures—clusters, sheets,
and filaments in particular. Aragón-Calvo et al. (2007) use what
they term the “Multiscale Morphology Filter” which “looks to
synthesize global structures by identifying local structures on
a variety of scales and assembling them into a single scale in-
dependent map.” Aragón-Calvo et al. (2007) and Jones et al.
(2010) convincingly demonstrate the abilities of their technique
via toy models, complex N-body simulations, and the SDSS.
The Bond et al. (2010) technique is unlike adaptive smoothing
(e.g., Stein 1997), because Bond et al. (2010) smooth separately
on a series of length scales, with the goal of characterizing the
spatial structures more accurately. Choi et al. (2010) use a Hes-
sian approach to compare the length of filaments found at a
redshift of ∼0.8–33 lower-redshift subsamples from the SDSS
to find that the length scales have not changed very much over
this range of redshifts. van de Weygaert & Schaap (2009) re-
view in excellent detail the use of density estimation in “The
Cosmic Web” via the “Delaunay Tessellation Field Estimator.”
After submission, two other papers (Sousbie 2010; Sousbie et al.
2010) using DTFE as a density estimator were submitted which
characterize the cosmic web and filamentary structure using a
method from computational topology called Morse theory.

Recently, Hahn et al. (2007a, 2007b) have developed a
classification scheme designed to distinguish between dark
matter halos in four structures, clusters, filaments, sheets, and
voids, in N-body simulations of the universe. The scheme
relies upon the dynamical differences of the four different
structures quantified by an application of the Zeldovich (1970)
approximation to the evolved density field which allows one
to determine their asymptotic dynamics. There is one free
parameter that acts as a smoothing parameter for the density
field. Nonetheless they claim to be capable of quantifying the
redshift evolution of dark matter halo properties of mass and
environment. This is comparable to the works by a number of
authors in recent years (e.g., Lemson & Kauffmann 1999; Sheth
& Tormen 2004; Croton et al. 2007).

While characterizing the clustering of galaxies was the initial
focus of many researchers, void characterization in three-
dimensional simulations and surveys has also been of interest.
Recently, Colberg et al. (2008) assembled 13 different void-
finding algorithms and for the first time tested them all on
a single data set—the Millennium Simulation (MS; Springel
et al. 2005). They claim that the results agree very well with
each other. Since then two other interesting approaches with
zero or few free parameters have appeared. Platen et al. (2007)
have utilized the watershed transform to develop what they term
the “watershed void finder” to find voids in three-dimensional
distributions in a “relatively” parameter free way (also see
Sousbie et al. 2009). Neyrinck et al. (2005) and Neyrinck (2008)
have used Voronoi tessellation to develop a relatively parameter-
free “halo-finding” algorithm called VOBOZ (VOronoi BOund
Zones) and another to find voids and subvoids called ZOBOV
(ZOnes Bordering On Voidness) “without any free parameters
or assumptions about shape.”

Regardless of method, clusters and voids were clearly vis-
ible in the first large area redshift survey: The Center for
Astrophysics Redshift Survey (Huchra et al. 1983) and explicitly
described in Davis et al. (1982). Davis et al. (1982) also discuss
the discrepancies between their observational data and N-body
simulations5 at the time: “We also present redshift-space maps
generated from N-body simulations, which very roughly match
the density and amplitude of the galaxy clustering, but fail to
match the frothy nature of the actual distribution.”

Giovanelli & Haynes (1991) have an excellent summary of
the largest redshift surveys up to 1991, by which time there were
approximately 30,000 galaxies with measured redshifts. Surveys
up to 1990 were mainly done with single slit spectrographs in
the optical or 21 cm H i line surveys of spirals and gas-rich
dwarfs, both measuring one galaxy at a time. Since that time the
number of measured galaxy redshifts has increased by orders of
magnitude because of advances in large format CCD technology
in combination with multi-fiber and multi-object spectrographs.
One of the first of these new surveys was the Las Campanas
Redshift Survey (LCRS; Shectman et al. 1996) which collected
over 23,000 redshifts in six years. As one can surmise from
the above historical survey of methods, it was expected that a
large variety of techniques would be applied in rapid fashion
by a large number of groups. For example, Doroshkevich et al.
(1996) applied a “core sampling technique” (Buryak et al. 1994)
to find the characteristic scales for LSS in the LCRS. A few
years later, Doroshkevich et al. (2001) combined inertia tensor
and MST analysis to three-dimensional data to confirm their
earlier LCRS results and determine cluster dimensions.

5 20,000 points, 150 Mpc on a side via Efstathiou & Eastwood (1981).
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The next large redshift survey completed was the Two Degree
Field Galaxy Redshift Survey (Colless et al. 2001), which
collected approximately 250,000 galaxy redshifts. The state of
the art at present is the Sloan Digital Sky Survey (SDSS; York
et al. 2000) with over 1 million measured redshifts thus far, with
more on the way.

The availability of these new large-area low-redshift surveys
has greatly enhanced prospects for an objective quantitative
description of so-called LSS as delineated by optical and other
observations of galaxies. In addition to the intrinsic importance
of assessing LSS itself, links between structure and galaxy
morphology or color have provided much of the inspiration
for an explosion of interest in large-scale observational surveys.

In fact, there are several near-future large-area surveys of
the sky which will allow one to test the predictions of general
relativity for the growth of structures in the universe and its
consistency with the history of cosmic expansion (e.g., Stril
et al. 2010; Rapetti et al. 2009). A sampling of these surveys
includes the Large Synoptic Survey Telescope (Ivezić et al.
2008), PanStarrs (Kaiser et al. 2002), and BigBOSS (Schlegel
et al. 2009).

One of the oldest uses of LSS analysis is in the area
of environmental effects on galaxy formation and evolution.
Starting from the time of Hubble (1936) astronomers have found
that the properties of galaxies are dependent upon conditions
in their surroundings. Since then a large and varied research
effort has explored the dependence of galaxy color, morphology,
and star formation history on local density, using ever larger
samples of galaxies (e.g., Oemler 1974; Butcher & Oemler
1978; Dressler 1980; Postman & Geller 1984; Santiago &
Strauss 1992; Zehavi et al. 2002; Hogg et al. 2003; Kauffmann
et al. 2004; Croton et al. 2005; Blanton et al. 2006; Blanton &
Berlind 2007; Zehavi et al. 2010).

Part of the present work differs from the tessellation proce-
dures referenced above by combining Voronoi cells into contigu-
ous sets, called blocks, using a statistically principled method
called Bayesian blocks (BBs; Scargle 1998, 2002; J. Scargle
et al. 2010, in preparation). The blocks are collected into con-
tiguous sets to form structures meant to model the shapes of
clusters and other large-scale entities. Since no constraints—
such as spherical symmetry, convexity, or even simple connec-
tivity—are imposed on the derived structures, our results are
useful for detecting and characterizing complex structures such
as filaments, sheets, and irregular clusters, not just classical
galaxy clusters. This approach is consonant with the notions of
the Cosmic Web and Voronoi Foam (van de Weygaert 2003;
van de Weygaert et al. 2009). Although we leave analysis of
the detection efficiency for such complex structures to the next
paper in this series, the flexibility of the BB representation of
the density field allows such structural features to be detected
and characterized

Our approach to density estimation is outlined in Section 2,
the data sets used are described in Section 3, density and
structure estimation methods in Section 4, results in Section 5,
and conclusions in Section 6.

2. BASIC APPROACH: DENSITY ESTIMATION PLUS
STRUCTURE ANALYSIS

The approach here is the commonly adopted one of treating
galaxies as mass points,6 using positional and redshift data

6 Throughout, the terms galaxy and point will be used more or less
interchangeably.

from surveys to determine locations of these points in three-
dimensional space. As described below, the subsequent structure
analysis flows from the coordinates of the points themselves,
and by determining the properties of a postulated underlying
continuous field.

Several factors impose limits on this approach. First, note
that the data are inherently four, not three, dimensional: distant
galaxies are placed by the data where they were a look-back time
prior to now, not where they are now. Interpretation of any data
analysis results must account for this lack of co-temporality.

Next, there is an inevitable positional uncertainty due to ran-
dom observational errors in the basic data and systematic effects
arising in the transformation from redshift to spatial coordi-
nates. For example, see the discussion of redshift distortion in
Section 18.2 of Saslaw (2000).

And finally, note that there are fundamental limitations on
the information that can be extracted from coordinates of a
set of points. One can carry out statistical analysis directly
on the discrete data points, for example by studying multiple-
point correlation function estimators, the distribution of nearest
neighbor distances, the related MSTs, and the like. Another more
or less complementary approach is to postulate the existence of
an underlying continuum field, and regard the points as samples
related in some way to the field. However, the meaning of such a
continuum is problematic in general, especially at small spatial
scales, e.g., less than that characterizing galaxy nearest neighbor
separations.

One such continuum scheme is to regard the field as an
estimate of the density of points (say in units of galaxies per
cubic parsec), smoothed on scales at least as large as the typical
distance between points, and very much larger than the sizes of
the galaxies, which are after all treated as points of zero size.
Excellent overviews of the mathematical aspects of multivariate
densities and their estimation from point data are to be found in
Silverman (1986) and Scott (1992). Discussions of this concept
in relation to the LSS of the universe are found in Martinez &
Saar (2001), Saslaw (2000), and Dekel & Ostriker (1999).

A different, but related, scheme interprets the field as a
probability distribution, and treats the galaxies as points drawn
from it in the usual statistical sense. More specifically, this
process can best be viewed as a doubly stochastic process,
sometime called a Cox process. The spatial dependence of
the galaxy formation is described by process 1, reflecting the
evolution of the initial density fluctuations into a formation
rate parameter in a probability distribution locally defined in
spacetime. Process 2 represents the random sampling from
the rate determined by process 1. That is to say, the actual
appearance of a galaxy in the data is a second random process,
independent of the first, reflecting the appearance of a galaxy at
a given point in spacetime. Indeed, one could separate the galaxy
formation and observational detection aspects into two separate,
independent processes, if such a triply stochastic representation
should prove useful. A mathematical introduction to the basics
of such random processes can be found in Papoulis (1965), and
excellent overviews of the mathematics of the corresponding
theory and estimation methods are Snyder & Miller (1991),
Daley & Vere-Jones (2002), Andersen et al. (1992), Kutoyants
(1998), Preparata & Shamos (1985), and de Berg et al. (1997).

Both of the above approaches have to deal with difficult
problems related to the fact that the points are not independently
distributed with respect to both processes 1 and 2, due to the
physics of the underlying formation, evolution, and clustering
processes and observational effects (such as the “fiber collision”
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Figure 1. Views of the SDSS DR7 data. Left: positions of galaxies in the volume-limited (VL) selected SDSS DR7 catalog showing the boundary points that are
removed. Middle: the full SDSS DR7 and the VL subsample selection. Right: redshift histograms of the full SDSS DR7 and VL samples.

problem described below). These and other issues are well
described in a large literature (e.g., Martinez & Saar 2001).

All of the algorithms used in this paper have some relation
to density estimation from points. But some go further. For ex-
ample, spatial Voronoi or Delaunay tessellations extract infor-
mation about relations between galaxies—in terms of quantities
such as local galaxy density gradients, nearest neighbor dis-
tances (where, importantly, the number of nearest neighbors is
not fixed, but rather determined by the data themselves), the
distributions of these distances, and information about connec-
tivity within the galactic network that forms the skeleton of the
cosmic web.

3. THE DATA

We have applied our three techniques (based on adaptive
kernel smoothing, self-organizing maps (SOMs), and BBs) to
three individual data sets (one observed, one simulated, and one
a simulated purely random distribution).

Data set 1 is a VL sample drawn from the SDSS DR7
(Abazajian et al. 2009, DR7) Main Galaxy Sample (MGS)
Catalog (Strauss et al. 2002) which contains a redshift for each
galaxy. The data set was drawn from the DR7 in the same
manner that Cowan & Ivezić (2008, hereafter CI08) generated
their sample from the SDSS data release 5 (Adelman-McCarthy
et al. 2007). We chose to use the DR7 sample because the sample
is larger and essentially geographically contiguous in the north
galactic cap region. Rather than use the standard SDSS casjobs
interface to obtain the actual data7 the New York University
Value Added Galaxy Catalog (NYU-VAGC; Blanton et al. 2005)
was utilized. The NYU-VAGC includes the k-corrections for
all galaxies from the MGS spectroscopic survey. This makes
generating the VL sample rather trivial. Figure 1 shows the
selection of the VL subset of the NYU-VAGC sample, after
a selection of apparent magnitude in r < 18 which mimics
the MGS properly. Figure 1 also shows the respective redshift
distributions of the magnitude-limited and VL samples.

The MGS sample is obtained from the SDSS via the prim-
target flag: primtarget = TARGET_GALAXY (p.primtarget &
0x00000040 > 0). The photometric quality is constrained via
the three flags !BRIGHT and !BLENDED and !SATURATED:
((flags & 0x8) = 0) and ((flags & 0x2) = 0) and ((flags
& 0x40000) = 0), respectively. All redshifts are required to
have an SDSS defined redshift confidence better than 0.95

7 http://casjobs.sdss.org

(zConf > 0.95) and there should be no redshift estimation warn-
ing errors (zWarning = 0). Our sample contains 561,421 galax-
ies at this stage. An example of what the query would look like
in casjobs is given in Appendix A. The query shown does not
include the absolute magnitudes or k-corrections, as these were
obtained from the NYU-VAGC catalog.

The SDSS also has a fiber collision issue which will play a role
for density estimation. In essence, fibers cannot be placed closer
than 55′′ to each other. However, overlap of repeated plates in
some areas means that in fact redshifts have been measured
for both galaxies in many pairs separated by less than 55′′. To
eliminate bias and ensure a homogeneous sample, we removed
a randomly chosen member of each such pair.

Our VL data set was drawn from the 561,421 galaxies in the
NYU-VAGC DR7 data set above. The largest contiguous region
in the South Galactic Cap was chosen and then a redshift/
color cut of z < 0.12 and MR < −20.0751 was applied
yielding 146,112 galaxies (see Figure 1). These samples were
then processed as follows.

1. Generate angular (two-dimensional) separation informa-
tion: find each galaxy’s six nearest neighbors on the sky.
We verified that this process guarantees identification of
all neighbors within 55′′. Deleting randomly chosen mem-
bers in these close pairs eliminated 6314 galaxies from the
sample.

2. From redshifts and sky coordinates generate three-
dimensional Cartesian coordinates, in redshift units, for
each remaining galaxy.

3. Generate three-dimensional nearest neighbor information
by calculating distances to the 12 nearest neighbors. This
number was chosen for convenience, to avoid statistical
issues that might be associated with a smaller number of
neighbors. This neighbor information was used only in the
SOM approach.

4. Generate the Voronoi tessellation of the remaining set of
galaxies. This yields the cell vertices associated with each
galaxy, from which one finds the identities of the variable
number of near neighbors in the Voronoi–Delaunay sense.

5. Calculate from the tessellation information a set of derived
parameters, including the cell volume V and radius RVoronoi,
defined as ( 3V

4π
)1/3; the distance dCM between each galaxy

and the center of its cell; and an “elongation” measure
equal to the ratio between the maximum and minimum
dimensions of the cell (see Appendix B).

6. Normalize the nearest neighbor distances and the Voronoi
radius (RVoronoi) by the radius duniform = 3.2 × 10−3

5
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Figure 2. Data from the full Millennium Simulation displayed as in Figure 1. Left: positions of galaxies in the volume-limited (VL) selected Millennium Simulation
(MS) catalog showing the boundary points that are removed. Middle: the full MS and the VL subsample selection. Right: redshift histograms of the full MS and VL
samples.

associated with a uniform density distribution. This infor-
mation was used in both the SOM and BB approaches.
Scale also the offset distance dCM by RVoronoi.

7. Flag questionable samples: apply a set of tests to eliminate
Voronoi cells that appear to be distorted by boundary
effects. These tests are described in detail in a discussion
of the “Boundary Problem” in Section 4.2.2. 5807 points
are removed which is about 4% of the initial VL sample of
146,112.

After the removal of the boundary points and those within
55′′ of each other we are left with 133,991 points.

Combining these derived data (nearest neighbor distances and
characteristics of Voronoi cells) with attributes taken directly
from the survey data (positions, photometry data, etc.) yielded
a unified set of attributes for each galaxy as described in
Appendix B below.

Data set 2 is a VL sample drawn from the MS (Springel et al.
2005, hereafter MS). We follow the same recipe for creating our
sample as is done by CI08 to make it comparable to the SDSS
sample. After a redshift and magnitude cut to mimic the SDSS
MGS (r < 18 and 0.005 < z < 0.25) there are 509,877 galaxies.
Another redshift and absolute magnitude cut is made to mimic
the SDSS VL sample described above (R < − 20.0751 and
z < 0.120). This leaves 171,388 galaxies in our simulated VL
sample. See Figure 2 for a representation of these samples.

Data set 3 is a set of randomly distributed points that mim-
ics the SDSS DR7 VL sample above. We took a cube of
space enclosing a volume equivalent to the SDSS DR7 VL
sample. We then filled this cube with points drawn indepen-
dently from a spatially uniform probability distribution. It is
common to call this a Poisson distribution, because the num-
ber of such independent and uniformly distributed points in
a predefined volume of size V obeys the Poisson distribution,
N (n) = (λV )ne−λV /n!, where λ is the event rate per unit vol-
ume. It can be confusing to use the same term for this auxiliary
distribution as for the overall spatial distribution. We therefore
prefer to call the random process based on its essential nature:
independent, or for the case where the rate parameter λ is con-
stant, independent and uniform. (Indeed, the “Poisson” nature
of this distribution is merely an incidental consequence of these
properties.) The number of points was chosen such that, after
removing pairs just as with the SDSS fiber collision criterion
(none closer than 55′′), there remained a number of galaxies
(144,700) close to that in the SDSS DR7 VL sample. Note
that this sample differs from the others in two separate ways:
the uniformity of the distribution and its simple, geometrical

boundary. For the most part, the former is the more important
consideration.

4. STRUCTURE ESTIMATION METHODS

As described in Sections 1 and 2, analysis of LSS is not a
simple matter, especially if one wishes to invoke an underlying
continuum. Here we describe the various methods we have used,
each of which explores a different aspect of the distribution of
galaxies on various scales.

4.1. Kernel Density Estimation

Kernel density estimation (KDE) is probably the most widely
used non-parametric density estimator in use today. For this
reason, several groups have used three-dimensional KDE in
recent years to study the LSS of the universe from redshift
surveys (e.g., Connolly et al. 2000; Balogh et al. 2004), and we
include such an analysis in order to compare the results of our
two newer methods to this well-known approach.

The underlying idea of three-dimensional KDE is simple:
construct a three-dimensional profile (or kernel) centered at
each data point, and sum the contributions of these kernels for
all of the data points. The kernels and their sums are evaluated
at a grid of three-dimensional points, typically arranged in a
uniform rectangular grid. What needs to be specified are: the
shape of the kernel (Gaussian and Epanechnikov kernels are
commonly used) and its width8 (this can be fixed or adaptive to
the underlying distribution) and amplitude, plus the locations of
the grid elements.

Since our other two methods are effectively adaptive (al-
though the adaptivity is implemented differently), we use an
adaptive-bandwidth Gaussian kernel to calculate the density.
To describe it as simply and transparently as possible we first
explain the one-dimensional univariate case and then the three-
dimensional one. In one dimension, one first starts by estimating
the density with a fixed bandwidth (h) where the Gaussian kernel
(K) is given by Equation (2). Equation (3) is then the density es-
timate (p) for the one-dimensional fixed bandwidth case where
the points are given by xi. To estimate the variable or adap-
tive one-dimensional KDE one allows the bandwidth to vary
from point to point. Let di,j represent the distance from point
xi to the kth nearest point in the set making up the other n − 1
data points. Equation (4) represents the one-dimensional vari-
able KDE where one sees that the window width of the kernel at

8 Sometimes called bandwidth, although strictly speaking this term refers to
the frequency domain.
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point xi is proportional to di,j such that regions with sparser data
points will have flatter kernels. Hence, the new adaptive band-
width could be represented as hi = h × di,j . This estimation
method is based on the approach laid out by Silverman (1986).

In the three-dimensional case, one has to find an initial
estimate of the density for each point, normally by using the
fixed bandwidth three-dimensional KDE shown in Equation (5).
One then must build a local bandwidth term λi at each point.
These should have unit (geometric) mean and be multiplied by
the global bandwidth h. In this case, h is the overall smoothing
and λi adjusts the bandwidth at each point to “adapt” to the
density of the data. The three-dimensional adaptive density
estimate is given by Equation (6).

However, multi-dimensional multi-bandwidth KDE on large
data sets can be computationally expensive. In order to deal with
a large number of points (e.g., 100,000) in a reasonable time,
Gray & Moore (2003a, 2003b) have devised an efficient “Dual
Tree” algorithm. The algorithm also gives an error within a user-
specified tolerance at any evaluated point. Rather than code the
algorithm ourselves we utilized a package of MatLab9 routines
based on the KDE Toolbox of Ihler10 which has implemented
the dual tree algorithm of Gray & Moore (2003a, 2003b). We
made some small modifications to allow the code to run on 64
bit platforms so that one could evaluate the largest of our data
sets,

K = e
− (x−xi )2

2h2 (2)

p(x) = 1

nh

n∑
i=1

K

(
x − xi

h

)
(3)

p(x) = 1

n

n∑
i=1

1

hdi,j

K

(
x − xi

hdi,j

)
(4)

p(x) = 1

n

n∑
i=1

1

Vh

K

(
x − xi

h

)
(5)

p(x) = 1

n

n∑
i=1

1

Vhλi

K

(
x − xi

hλi

)
. (6)

The KDE method gives an almost continuous distribution of
densities. In order to make easier comparisons between this
and the two other methods to be discussed below we have
translated the continuous distribution of densities into discrete
classes. This was done by collecting the base-10 logarithms
of the densities into a small number of bins. For the SDSS
DR7, MS, and uniform random data sets this led to 11, 13,
and 10 KDE logarithmic density classes, respectively, chosen to
approximately match the SOM-based class structure.

4.2. Tessellation

Tessellation is a natural partitioning scheme for analysis of the
distribution of points in a space of any dimension. We have found
it exceptionally useful for this study of the spatial distribution of
galaxies. Accordingly, two of our structure analysis procedures
(BBs and SOMs) use as building blocks the elements of the
Voronoi tessellation of three-dimensional space defined by the
galaxy positions, as described in the following subsection.

9 c©The Mathworks, Inc.; http://www.mathworks.com
10 http://www.ics.uci.edu/∼ihler/code

4.2.1. Voronoi Tessellation

Tessellation divides the data space into subvolumes, here
called cells. The first four of the following are properties of
tessellation in general, while the last two are specific to Voronoi
tessellation in three dimensions (Okabi et al. 2000).

1. N data points generate N cells.
2. The cells and data points are in a one-to-one

correspondence.
3. The union of all N cells is the whole data space.
4. The intersection of any pair of cells is empty (no cell

overlap).
5. A cell comprises that part of the data space closer to its data

point than to any other.
6. The cell boundaries are flat two-dimensional polygons.
7. Computation of the tessellation yields a data structure

containing the following information:
(a) an estimate of the local point density: V −1, where V is

the cell volume;
(b) the three-dimensional vector from cell centroid to data

point estimates the local density gradient, in both
magnitude and direction; and

(c) information on nearest neighbors is encoded in the
vertices of the bounding polygons. One can define
two cells to be adjacent in three ways, depending on
whether they share at least one vertex, edge, or face; in
this order, each definition is included in the next.

In regions of high density, a small volume is apportioned among
many points, so the cells are small. In low density regions, where
points are few and far between, the opposite is true: the cells are
large. This is the key inverse relationship between density and
cell size (cf. item 5 in the list in Section 3), supplemented by
the gradient information.

Each cell is that part of the data space dominated by the
corresponding data point (item 5); in Voronoi tessellation, this
means in the sense of being closer to it than to any other data
point. Items 3 and 4 together mean that the tessellation is a
partition of the data space. The subsidiary information in item 7
exemplifies the way in which both point and local information
are conveniently represented in the tessellation construct. Our
BB and SOM schemes make direct use of this information in
different ways, as described in later sections. In the former
case, density and geometrical information alone is used to
gather cells into connected sets, called blocks, to represent the
underlying density structure. In the latter case, incorporation of
other subsidiary information allows the SOM representation to
describe more general characteristics of the LSS.

In both cases, the adjacency information encoded in cell
faces, edges and vertices is rather like a list of nearest neigh-
bors—where the number of neighbors is not pre-set, and in
fact is part of the information extracted from the raw data. Fur-
ther, the density gradient information mentioned above can be
utilized for analysis and for visualization purposes. A handy
density visualization scheme depicts each cell as a frustum with
the Voronoi cell as the base with straight vertical sides, and
capped by a copy of the Voronoi cell at a height ρi = ni/Vi

where the number of points (often 1) is divided by the cell vol-
ume. This fast and convenient density representation involves
no loss of information by binning or smoothing, but therefore
has a discontinuous and ragged appearance. Display issues limit
this device to data spaces of dimension 1 or 2 (and therefore it
is not used here); nevertheless, this construct is useful for com-
puting subsidiary quantities such as widths of structures, local

7
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Figure 3. Distribution functions of the logarithm of local densities, computed as the reciprocals of the volumes of each galaxy’s Voronoi cell. In both panels: dark
line, SDSS DR7; medium line, Millennium Simulation; light line, spatially uniform random distribution. Left: unbinned cumulative distributions. Right: differential
distributions. All distances (r) used to calculate the volumes are in redshift units (z): r(z) = 3 × 103 h−1z Mpc. The units of volume for the random uniform case are
chosen so that the mean is unity (indicated by the vertical line at log(cell density) = 0).

mean density gradient, etc. In short, Voronoi tessellation yields
a convenient data representation that enables many useful local,
intermediate, or global quantities to be computed.

There are many excellent, fast algorithms for tessellating
spaces of any dimension. We used the Matlab routine Qhull
(Barber et al. 1996) which is computationally efficient and re-
turns adjacency and other auxiliary information in a convenient
form. Without any further computations, the Voronoi cells ex-
press considerable statistical information about the point distri-
bution. For example, Figure 3 shows the distribution functions
of the local densities computed as the reciprocal of the volumes
of the Voronoi cells for the three cases: the SDSS DR7 data,
the MS data, and the uniform data. These distributions char-
acterize the dynamic range of the cell sizes. As expected, the
cells in the uniform case have a relatively narrow distribution
centered around the mean cell size, while in the other cases
a broader range reflects the presence of structure on a wider
range of scales. The degree to which the distribution for the
case of the MS data is similar to that for the DR7 data confirms
the correctness of this aspect of the simulations. While the log
densities are approximately normally distributed, the density
distributions themselves have long tails that render the (log) of
the mean value a misleading central measure.

Figure 4 compares the distributions of the number of neigh-
bors of each cell. A neighbor of a cell is defined to be any cell
sharing one or more Voronoi vertices with the given cell. In
this case, the distributions of the actual DR7 data and the MS
simulation data are nearly indistinguishable, whereas that of the
random data are distinctively different.

Figure 5 depicts the distribution functions of the logarithm of
the average distance to the Voronoi neighbors of each galaxy.

As expected, the actual and simulated galaxy data show much
more dispersion than does that for the randomized case.

4.2.2. The Voronoi Cell Boundary Problem

For points lying sufficiently deep within the main population,
Voronoi tessellation is a stable and well-understood procedure
that gives meaningful results. For galaxies near an edge of the
sample space the situation becomes problematic. Some cell
vertices for these points characteristically lie unrealistically
far beyond the sampled region. Such outsized cells are an
artifact due entirely to the sampling and not to the actual
galaxy distribution. For this reason and other difficulties, such
as vertices formally assigned to lie at infinity, the reliability, or
even the meaning, of the tessellation as a density estimation tool
breaks down near the edges of the volume populated by the data
points. This is the Voronoi tessellation “Boundary Problem.”

It is possible to attempt to fix the problem, either by modifying
the Voronoi tessellation procedure itself or by modifications to
the data set. One possibility would be to construct replacement
data cells, truncated to finite volumes, as surrogates for the
offending cells. However, unless the edges of the sample space
are well defined and smooth, procedures of this sort tend to
be arbitrary and can introduce problems of their own. For
a data set bounded by complex boundaries with irregularly
shaped indentations and projections there is no simple way to
distinguish every cell that suffers from the boundary problem
from those that do not without eliminating a larger than
necessary number of points. Note that after the submission of
our paper a similar study to ours was also submitted (Sousbie
et al. 2010). They deal with the boundary problem in the SDSS
in a relatively simple manner by defining boundary points as

8
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Figure 5. Distribution functions of (log) mean distances to Voronoi neighbors. In both panels: dark line, SDSS DR7; medium line, Millennium Simulation; light line,
spatially uniform random distribution. Left: unbinned cumulative distributions, normalized to unit total fraction. Right: differential distributions.

those that “belong to a pixel with at least one completely
empty neighbor.” While we agree that this method is simple and
effective, we believe that it removes too many non-boundary
points and given the already small size of our VL sample we did
not feel this would be appropriate.

Regardless, it is possible to devise a set of ad hoc criteria that
will identify all of the worst-case situations without excluding

a prohibitive number of “good” samples. These criteria were
obtained by studying the distributions of various parameters of
the Voronoi cells, in order to set corresponding thresholds.

We evaluated a wide range of different parameters by using
the complete data set and subsets of the data that filled sim-
ple convex shapes. This was used to help determine which
parameters tended to assume extreme values for samples

9
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Table 1
Boundary Tests

Attribute SDSS Millennium
Simulation

Uniform

Threshold Numbera Threshold Numbera Threshold Numbera

RVoronoi 0.0040 4147 0.0040 4904 0.0040 3556
dCM 0.0023 4515 0.0023 3475 0.0023 5001
RMax 0.0067 5566 0.0067 6022 0.0067 6636
Unionb · · · 5807 · · · 6178 · · · 6649
Fractionc · · · 0.0415 · · · 0.0398 · · · 0.0480

Notes.
a Number that failed this test.
b Number that failed one or more of the three tests.
c Fraction of samples that failed one or more of the three tests.

at a boundary without excluding an unacceptable number
(N < 1–200) of the samples well inside the data volume (what
we call the “interior region”). The boundary points were identi-
fied by the extent of their Voronoi cells with respect to the edge.
The parameters most sensitive to the position of a sample with
respect to a boundary were RVoronoi, dCM, and the normalized dis-
tance from the center of a Voronoi cell to its furthest apex, RMax.
We used these three parameters in conjunction to obtain the best
performance. We evaluated our criteria for a range of different
thresholds to verify that the results were comparatively insensi-
tive to the values of these thresholds. The final values used are
listed in Table 1.

The choice of the “interior region” mentioned above is
described as follows.

1. One desires a region deep enough inside the full sample
region such that one is certain that no sample in this interior
region will suffer from the “boundary problem.” To ensure
this one has to be certain that even samples with extremely
large Voronoi volumes have volumes that lie inside the full
sample region.

2. An “interior region” is chosen with a boundary that lies
10 × duniform inside the boundary of the full sample region.
Recall that duniform = 3.2 × 10−3 in units of redshift.

3. To extend outside the full sample region, a point in this
“interior region” would have to have at least one dimension
of its Voronoi volume greater than 10 × duniform in length.
If the volume was shaped as a very thin slice (which
is unlikely) it could reach to the boundary, but our own
tests showed that this did not take place in our data sets.
Regardless, this means that the volume would be roughly
(10 × duniform)3 and our tests show that the number of
samples with volumes that size or larger in our interior
region is extremely small: N < 1 –200 as mentioned above.

4. One can conclude that an interior region with a boundary
10 × duniform inside the boundary of the full data set cannot
contain a significant number of points that suffer from the
boundary problem.

The number of affected boundary data points was small (our
selection criteria flagged 5807 of 146,112 points or ∼ 4% of the
population), so we simply mark them to exclude them from any
further analysis.

4.3. Three-dimensional Bayesian Blocks Using
Voronoi Tessellation

This section describes the modeling procedure we used
for the three-dimensional galaxy distribution using the BB

algorithm. In a nutshell, we partition the data space with a set of
surfaces enclosing three-dimensional solids. A constant density
is assigned to each solid which is equal to the number of galaxies
within it divided by its volume. This partitioning is implemented
via an optimization procedure designed to express spatial
density variations that are real, and at the same time suppress
statistical fluctuations that are not real. The former is regarded
as the true signal and the latter as noise (especially that due to
the presence of small numbers of points). Of course these two
goals cannot be achieved perfectly. The corresponding signal-to-
noise tradeoff is mediated by the model fitness function (detailed
below in Section 4.3.2). As in the two dimensional one there are
an infinite number of ways to partition a given volume. However,
allowing only partitions whose elements are collections of the
polyhedra defined through the Voronoi tessellation of the data
points, as described in Section 4.2, yields a completely tractable,
finite, combinatorial optimization problem.

In summary, the goal of finding the optimal piecewise
constant model is achieved with the BB algorithm. Optimality
is in the sense of maximizing a measure of goodness of fit
of models of this kind. The basic elements, i.e., the Voronoi
cells, are determined using standard computational geometry
algorithms. In the next subsections, we describe how the
cells are collected together into density levels, and how the
cells within a level are collected together to form connected
blocks. The assembly of blocks into meaningful structures
(such as clusters, sheets, filaments, or other structures) will
be described only briefly, as details will appear in a separate
paper.

4.3.1. Levels

The segmentation process described above begins by col-
lecting the galaxies into levels—i.e., sets forming a hierar-
chy ordered by density (galaxies per unit volume). The goal
is to find the best piecewise constant model described above
(Section 4.3). This optimization is implemented with an algo-
rithm (Jackson et al. 2010) that maximizes goodness-of-fit for
piecewise constant models. This procedure for optimal segmen-
tation of a data space of any dimension is an extension of a
one-dimensional algorithm (Jackson et al. 2005) that in turn is
an exact, dynamic programming based version of the approxi-
mate algorithm in Scargle (1998).

In general a set of three-dimensional, or even two-
dimensional, data cells cannot be ordered in a way that allows
implementation of the basic idea behind the one-dimensional
algorithm.

Extension to higher dimension (Scargle 2002; Jackson et al.
2010) is achieved by discarding the condition that the elements
of the partition of the data space be connected sets of cells. That
is to say, the levels are generalized to be arbitrary subsets of the
cells in the tessellated data space. Since relaxing this constraint
slightly changes the fundamental problem and results in a larger
search space, it would seem to be counterproductive. It turns out
that the resulting simplicity of the problem outweighs the en-
largement of the search space. Without the contiguity constraint
the actual locations of the cells are irrelevant to the model. Ac-
cordingly all orderings of the cells are equivalent. It is convenient
to sort them in a one-dimensional array ordered by cell volume.
Now if the fitness function satisfies a simple convexity condition
each level in the optimal three-dimensional partition contains all
the cells in an interval in the ordered one-dimensional cell ar-
ray, and only those cells. It is this “intermediate density” order
property that allows the one-dimensional algorithm to find the
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Figure 6. Pictorial representation of the density values associated with the different levels (shown in different colors) and blocks within the levels. The base-10
logarithm of the density estimate—number of galaxies per unit volume in redshift units cubed—is plotted against an arbitrary index ordered by level. (The order within
the levels is not meaningful. In particular, the curved structure of the envelopes of the points is merely due to the order in which the algorithm identifies blocks within
the level.) The horizontal dashed lines indicate the mean galaxy densities in the levels. The distribution is truncated at the bottom right end for display purposes.

(A color version of this figure is available in the online journal.)

optimal partition of the original three-dimensional data. The
convexity condition referred to is that the fitness function is
convex as a function of the number of galaxies in the block
and also of block volume, and has nothing to do with convexity
of the block or level structures. See Jackson et al. (2010) for
details.

One problem results from this approach: the partition ele-
ments, here called levels in analogy with the contour levels in
topographical maps, are typically fragmented into a number
of disconnected parts—much as cartographic contours for the
same level can be disconnected. The next section describes our
treatment of this issue: in a nutshell, identify the parts of each
level that are indeed connected, and use these as the building
blocks for LSS.

4.3.2. Blocks

The innovation of our approach, compared to previous
Voronoi tessellation methods is that neighboring cells are col-
lected together into levels and blocks (structures within which
the galaxy density is modeled as constant) in a statistically prin-
cipled way. A block is a set of cells constrained to be connected,
but not restricted to have any particular shape properties such as
convexity or simple connectivity. Various abstract definitions of
connectedness are used in topology, but with finite spaces the
basic ideas are simple: a connected set consists of one piece,
not two or more disconnected pieces; a simply connected set
additionally has no holes. More formally, in a connected set any
pair of cells in the block can be joined by a path consisting of an
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Table 2
Classes Identified by the SOM Algorithm, Ordered by Mean Density

ID Class Subclass Characteristics

1 Cluster Dense Cluster Very high density, low gradient
1 Cluster Cluster High density, low gradient
2 Cluster Gradient Dense Cluster Gradient Very high density, moderate gradient
2 Cluster Gradient Cluster Gradient High density, moderate gradient
3 Strong Gradient Strong Gradient Very high gradient
4 Field Gradient Field Gradient Moderate-high gradient
5 Halo Halo Moderate density, low-moderate gradient
6 Field Field Low density, low-moderate gradient

Notes. Note that these class ID numbers only apply to the SDSS and MS data sets. See Section 4.4 for details on
these classes.

ordered list in which each successive pair of cells are touching.
This is sometimes called path-connected. In a simply connected
set, the same is true, but in addition there are no cases where
a pair of cells is joined by two or more paths that cannot be
smoothly distorted into each other.

Since the blocks represent coherent structures of sensibly
constant galaxy density, it is natural to associate them with
astrophysically meaningful structures. Without implying any
assumption about structural evolution or gravitational binding,
we assume that our blocks do correspond to coherent structures
in the galaxy distribution.

As presaged in the previous section one ramification needs
to be discussed: a given optimal level may well consist of a set
of disconnected fragments—sets of one or more cells spread
throughout the data space and not touching each other. To the
extent that partition’s levels are not connected, it does not solve
the constrained optimization problem originally posed.

If it turns out that each level has only one such component
(i.e., is simply connected), then we have solved the original
problem de facto. The levels would then be regarded as the
connected blocks that we originally sought. But if not, then
what? If some levels consist of two or more fragments detached
from each other, it is easy enough to identify these fragments and
re-label them as separate blocks. One can consider the resulting
partition an approximate solution (to the constrained problem)
or as an exact solution of a related problem of equal or greater
astrophysical interest (the unconstrained problem). The analog
presented by topographical maps, with contour lines indicating
loci of constant altitude, may serve to clarify. Suppose that the
altitude values are assigned based on some statistical measure,
and not fixed at even multiples or the like. Then there would
be two choices, namely to constrain or not constrain distinct
closed contours to be assigned the same value. That is to say,
use a global versus a local statistical measure to determined
contour values. The results presented below incorporate this
post facto re-labeling of block fragments as blocks.

To fully define the optimization problem we need to specify
a quantity to be maximized, such as a goodness-of-fit measure
for the piecewise constant block model. That is, we maximize
a measure of how well the data in a given block are modeled as
points randomly and independently distributed (with a single
constant probability density) uniformly across the block. A
number of such fitness functions were described in Scargle
(1998), but here we use a maximum-likelihood based fitness
function described in J. Scargle et al. (2011, in preparation),
namely the logarithm of the maximum likelihood for a model,
of a block of volume V containing N points in which the event
rate is constant.

Before exhibiting this fitness function, a few comments are
in order regarding the nature of the random process we are
postulating for each block. Our idealized mathematical picture
is that the spatial locations of events (galaxies) within the block
have two properties:

Independence: the occurrence of an event at any location
does not affect the occurrence of any other event at any
location.

Uniform distribution: the probability of an event occur-
ring in any given block does not depend on where in the
block the interval lies.

Note that these conditions are stronger than the usual, weaker
assumption that the events are uncorrelated: independence
implies uncorrelated, but not vice versa. However, neither of
these conditions is rigorously true. In addition to observational
issues, such as the fiber collision effect, the physical process
of galaxy formation prohibits the formation of two galaxies at
the same location. We are relying on this kind of correlation
being important only at small scales compared to those under
study here. On the other hand, the distribution of galaxies is of
course not actually constant over significant spatial regions. In
this sense, we are simply forming the best piecewise constant (or
step-function) approximation to a distribution that is presumably
continuously variable.

Hence, as in Scargle (1998) for time series data, we are led
to model the points in a block as identically and independently
distributed with a single probability that is constant across the
block. As mentioned above this process is often called a constant
rate Poisson process, because under it the number of points in a
fixed volume obeys the Poisson distribution:

P (N ) = (λV )Ne−λV

N !
(7)

giving the probability P that N points fall in volume V, when the
event rate is λ events per unit volume. The usual derivation of
this formula as the limit of repeated Bernoulli trials (see, e.g.,
Papoulis 1965) has led to a common misunderstanding that it
is fundamentally an approximation, but the above equation is
exact—absent correlations of the sort discussed above.

Maximizing the expression in Equation (7) leads to the
following maximum likelihood fitness function for the block
model of the full data interval:

Lmax = ΠK
k=1

(
Nk

Vk

)Nk

e−Nk , (8)

where Nk is the number of points in block k, Vk is the volume
of block k, and the product is over all blocks in the model,
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Figure 7. Location, in the SOM phase space, of types of galaxies identified by the SOM algorithm: upper left, all galaxies; upper right, Cluster and Cluster Gradient
classes; lower left, Strong Gradient and Field Gradient classes; lower right, Halo and Field classes.
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Figure 8. Locations, in the neighbor-distance/cell-volume space, of the galaxies assigned to the various SOM classes. Left panel: SDSS DR7 data; middle panel:
Millennium Simulation data; right panel: spatially uniform random distribution.

covering the whole observation region (J. Scargle et al. 2011, in
preparation). The corresponding logarithmic fitness for a block,
as implemented in our algorithm, is simply

log Lk = Nk log
Nk

Vk

(9)

for each block, and

log L =
K∑

k=1

Nk log
Nk

Vk

(10)

for the total model comprising K blocks. In the last two
expressions a term proportional to Nk is dropped because,

when summed over k, it contributes an unimportant constant
to the fitness of the full model. Note that these likelihood
expressions depend on only the sufficient statistics N and V,
and not on the actual distribution of the points within the
interval. This fact—somewhat counterintuitive, as this quantity
is meant to measure the goodness-of-fit of the assumed uniform
distribution—follows because under our model only the total
number of events, and not their locations, matters.

In the semi-Bayesian formalism of this model, the fitness
function must be augmented with a term that expresses prior
information about the value for K, the number of blocks. Opti-
mization using Equation (10) without such a supplement tends
to yield a large number of blocks, as many as K ≈ N .
Specification of a prior probability distribution P (K) is the
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Figure 9. These histograms show the number of points in each class, for the three methods applied to the three data sets. The columns indicate the analysis method: (1)
SOM: self-organizing map; (2) BB: Bayesian block; (3) KDE: kernel density estimator. In first column, the bins are the natural classed yielded by the SOM; the other
two are approximately matched density bins, as described in the text. The rows indicate the data analyzed: (1) SDSS; (2) MS: Millennium Simulation; (3) spatially
uniform random distribution.

Bayesian approach to this model complexity problem. A con-
venient choice for favoring a small number of blocks is the
geometric prior:

P (K) ∼ γ −K (11)

where γ is some constant. If the log of this prior is added to
the fitness of each block, the appropriate prior is assigned to
the model for the full interval. While it is not a smoothing
parameter, its value regulates the number of blocks, in effect
influencing the apparent smoothness of the representation. In
most cases, the details of the block representation do not
change much for a broad range of values of log(γ ), and derived
quantities (such as the sizes of structures) tend to be even less
sensitive to the adopted value of log(γ ). The main departure
from a rigorous Bayesian analysis is the fact that K, while
weighted according to the prior distribution described above,
is not explicitly marginalized, but instead is optimized in a
dynamic programming algorithm.

Figure 6 shows the density levels for the DR7 data, organized
by level and block. There are three densities that can be assigned
to a given galaxy (here denoted by cell n):

1. the cell density: Ncell/Vcell,
2. the block density: Nblock/Vblock, and
3. the level density: Nlevel/Vlevel,

where Ncell is the number of galaxies in a cell n, here always
unity, Nblock is the number of galaxies in the block containing
cell n, and Nlevel is the number of galaxies in the level containing

cell n. The cell, block, and level volumes are defined in an
obvious and similar way. In the figure, the ordinate is the block
density of the individual blocks, and the horizontal lines indicate
the level density assigned to all of the blocks in that level. Note
the lack of overlap of block densities from one level to the next,
a result of the algorithm.

4.3.3. Galaxy Structures: Sets of Blocks

Fruitful analysis of the galaxy density distribution can be
carried out directly from the blocks themselves, without regard
to aggregation into structures. Indeed, the same is true even at
the level of Voronoi cells. However, for various applications
and for comparison with other work oriented toward cataloging
clusters, voids, etc., it is useful to take the aggregation process
one step farther and collect neighboring blocks with different
densities together to form structures—not just clusters in the
classical sense, but also filaments, sheets, and other coherent
structures.

Of the many possible algorithmic approaches to this step, we
adopt a straightforward approach. First identify local density
maxima: blocks with a higher density than any block adjacent
to it. In three dimensions, there are three ways of defining
adjacency: blocks can be deemed adjacent if they share Voronoi
cell (1) vertices, (2) edges, or (3) faces. Almost no difference
in the deduced structure results from using these progressively
restrictive definitions, and throughout we use definition (1).
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Figure 10. Volume distributions for the SDSS cluster classes, in equal logarithmic bins. The legend describes the percentage of Cluster class Voronoi volumes for
each method.

Table 3
Number of Objects in Each Class for Each Data Set (SDSS, MS, Uniform) and Algorithm (SOM, BB, KDE)

Class SDSS Millennium Simulation Uniform

SOMa BB KDE SOM BB KDE SOM BB KDE

1 44336 166 30 60945 323 81 20008 288 33
2 36689 1038 243 33075 24496 904 31250 1214 13246
3 15367 22724 3318 6968 18826 2478 7801 3134 74819
4 12223 14365 14695 12089 18016 4650 19279 5381 34754
5 16132 15038 33357 30674 17437 10298 17181 11848 6883
6 9244 16738 42548 5176 13353 22089 19424 60437 1777
7 11380 29116 10677 35988 10292 17097 275
8 11436 9748 9211 37847 6597 10692 39
9 10304 916 7410 23726 6546 5

10 7725 19 7877 8634 6991 1
11 6551 1 6296 1924 3215
12 3968 4771 280 2070
13 4800 4356 28 1596
14 3358 2220 940
15 1890 1689 360
16 1583 1039 23
17 645 581
18 236 312
19 46 36

Note. a See Table 2 and Section 4.4 for a description of the SOM classes.

Table 4
Number of Galaxies and Classes in the SOM Cluster Class for Each Data Set (SDSS, MS, uniform) and Algorithm (SOM, BB, KDE)

Parameter SDSS Millennium Simulation Uniform

SOM BB KDE SOM BB KDE SOM BB KDE

Number 44336 38293 18286 60945 43645 40500 20008 10017 13279
Classes 1 1–4 1–4 1 1–3 1–6 1 1–4 1–2
Volume 12% 6% 9% 16% 6% 13% 8% 7% 55%

Note. The third row gives the corresponding percentage of the total volume.
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Figure 11. Volume histograms for the Millennium Simulation cluster classes. The legend describes the percentage of Cluster class Voronoi volumes for each method.
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Figure 12. Volume histograms for the uniform cluster classes. The legend describes the percentage of Cluster class Voronoi volumes for each method.

Next, consider these maxima as seeds, growing into larger
structures by attachment of adjacent blocks in the next lower
level in the density hierarchy. This procedure is repeated until
terminated by some stopping condition. Three examples are:
(1) stop at a fixed level in the density hierarchy, either locally
(for each structure) or globally; (2) stop when the structure
contains blocks for a fixed number of levels; and (3) stop when
all blocks belong to one cluster or another. In void analysis, one
would adopt a similar strategy beginning at the lower end of the
density hierarchy. This approach has some resemblance to that
of Platen et al. (2007). In the preliminary LSS analysis reported
here we adopt version (2), taking the structures to consist of the

block defining the local maxima plus blocks from the two next
lower density levels.

4.4. Self-organizing Maps

SOMs (Kohonen 1984; Ritter et al. 1992) are widely used
for unsupervised classification. They map points in the input
N-dimensional data space RN into an array of cells or principal
elements (PEs) in a classification space A of reduced dimen-
sionality (usually one or two dimensions). The algorithm is
designed to make the output of the SOM reproduce, as much
as possible, the topological structure of the input distribution.
In particular, it attempts to map adjacent clusters in the input
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Figure 13. Projections of the spatial locations of the main density structures found with the three methods, using the three data sets. These are the central plot from
Figures 14–16, 20–22, and 26–28. As discussed in the text in some sense these structures are clusters, but they are defined simply as localized density peaks. From left
to right: Bayesian blocks, SOM clusters, and KDE peaks. Top to bottom: spatially uniform random distribution, SDSS DR7, and Millennium Simulation.

space into adjacent PEs (or more commonly, adjacent blocks
of contiguous PEs) in the output space. A variety of measures
have been proposed to evaluate the degree to which topology is
preserved by a particular mapping (Villmann et al. 1997; Bauer
& Villmann 1997; Hsu & Halgamuge 2003).

Used alone, SOMs serve as a means to visualize complicated
relationships between groups of points. For classification pur-
poses, they must be combined with some partitioning scheme
that can identify regions in the output map that correspond to
different clusters in the input data. We used a modified version
of the same BB algorithm described for direct cluster analysis in
Section 4.3 (Scargle 1998; Jackson et al. 2010; J. Scargle et al.
2011, in preparation) to partition SOMs. This algorithm parti-
tions the SOM output space into contiguous segments (blocks)
in a way that optimizes a fitness function which measures how
constant the values of the attributes are within each segment.

Let the array of attributes (two in our case) in PE i of the SOM
output map be denoted by xi, and the corresponding variance
measure by σ 2

i ; then the relevant average attribute for block k is

Xk =
∑

i
xi

σ 2
i∑

i
1
σ 2

i

(12)

where the summations are over the Nk PE’s in block k. The fitness
function for block k takes the form (Gazis & Scargle 2010)

Ck = (Nk − 1)(ln(R) + ln
√

π) −
(

ln

( ∏
i

σi

))

+ ln

( ∑
i

1

σ 2
i

)
−

(∑
i

x2
i

σ 2
i

− Xk

)
(13)

where again the sums are over the PEs in the block. The cost for
the entire partition is

C =
K∑

k=1

Ck. (14)

In the SOM case, the space to be partitioned is the map itself
and the blocks will consist of clusters of contiguous PEs. Note
that this is subtly different from the conventional BB approach,
in which partitioning is performed in the original data space.

SOMs were generated using the Neuralware package, dis-
cussed at length by Merényi (1998). This software can use a
variety of neighborhood schemes and implements the “con-
science” algorithm proposed by DeSieno (1988) to prevent any
particular PE from representing too much of the input data. Clas-
sifications were performed using a 7×7 array of PEs. Neighbor-
hoods were rectangular and decreased in size from 5×5 to 1×1
during training. Multiple classifications were performed using
different values for the range and standard deviation parameters
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Figure 14. Self-organizing map analysis of the volume-limited SDSS data. The three rows in each column show the locations of the derived block structures in three
orthogonal projections. Column 1: the green points (found in the SOM Cluster class) are those assigned higher densities by the SOM algorithm, while the red are all
other points. For clarity the corresponding points in thin spatial slices (indicated as gray bands in Column 1) are plotted in green (points in the SOM Cluster class) and
red (non-cluster points) in Columns 2 and 3, respectively.

(A color version of this figure is available in the online journal.)

in Equation (13) to evaluate the sensitivity of the algorithm to
these parameters. These partitionings were also compared with
the best possible partitioning and the results of a conventional
threshold-based scheme.

One advantage of SOM-based classification is that it can be
performed on any set of parameters. In principle, kernel density
and BB methods could be modified to include other parameters,
but for an SOM this extension is natural—essentially automatic.
Care must be taken to chose parameters that are physically
meaningful. Initially we tried using the N + 1 nearest neighbor
distances as a proxy for N-point correlation functions, but the
results were too sensitive to statistical fluctuations that occur
when N is small. Our final classifications were performed using
two parameters: a scaled Voronoi radius, RVoronoi/duniform, and
an offset distance, dCM/RVoronoi, where

RVoronoi = (3VVoronoi/4π)1/3 (15)

VVoronoi is the volume of the Voronoi cell of that galaxy, and
duniform is the average spacing between points in an independent
uniform distribution. These parameters are good proxies for the
mean and gradient of the local density, respectively. Bagging
(short for bootstrap aggregating) was performed to improve
accuracy and stability, avoid overfitting, reduce variance, and
provide estimates of the uncertainty of the SOM classifications.

This standard machine learning procedure involves running the
complete analysis algorithm on data sets comprising subsamples
from the actual data in the bootstrap fashion (randomly sample
with replacement). We averaged the results of 10 such randomly
selected subsets of the full data set.

The SOM-based scheme partitioned the SDSS and MS data
sets into six classes. The SOM-based scheme partitioned the
uniformly random data set into eight classes (see Table 3),
but given the non-physical nature of these classes they were
not easily defined and will not be discussed further. Based
on inspection of the SDSS and MS spatial distributions we
identified the six SOM classes as Cluster, Cluster Gradient,
Strong Gradient, Field Gradient, Halo, and Field. We indicate
these fundamental classes, the number and identity of which
are determined by the SOM, in italics. Roman type is used
for the names of the somewhat less fundamental BB and KDE
classes, derived by clumping their fine-grained densities in order
to approximately match the populations of these SOM classes,
as detailed in Section 5.1. This classification could be further
refined into eight sub-classes: Dense Cluster, Cluster, Dense
Cluster Gradient, Cluster Gradient, Strong Gradient, Field
Gradient, Halo, and Field. It should be noted that this later
partitioning was determined entirely by the distribution of two
attributes (RVoronoi/duniform and dCM/RVoronoi) used by the SOM,
and did not involve any a priori choice of thresholds to identify
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Figure 15. Same as Figure 14, but for the Bayesian block (BB) structure analysis of the volume-limited SDSS data. The three rows in each column show the locations
of the derived block structures in three different projections. Column 1: the green points are those assigned higher densities by the BB algorithm, while the red are all
other points. Many of these green points would be considered to be in high-density clusters and are what we consider to constitute the BB Cluster class. Column 2
shows the same BB structures in a thin slice, to better visualize these results. Column 3 is the complement of Column 2: all structures not selected in the same thin
slice shown in Column 2.

(A color version of this figure is available in the online journal.)

particular categories. The characteristics typical of galaxies in
the classes were determined by a post facto inspection of the
results and summarized in Table 2.

Among the different bagged data sets the boundaries of the six
main classes were almost identical; while the subclasses were
less consistent their general structure was preserved. Attempts
to probe deeper into the hierarchy did not produce stable results,
which suggests that any structure that might exist at deeper levels
is ambiguous and/or poorly determined.

The six classes identified by the SOM algorithm can be
characterized as follows. The Cluster class involved regions of
high density and low gradient associated with centers of clusters.
The Halo and Field classes involved regions of moderate and
low density, respectively, with low gradient. Samples were
distributed uniformly in space, though galaxies in the Halo class
may have had some tendency to be associated with the outer
portions of clusters. The Cluster Gradient class involved regions
of high density and moderate gradient associated with filaments
and the outer portions of clusters. The Strong Gradient and Field
Gradient classes involved regions of extremely high gradient
and moderate gradient, generally of high density, associated with
the portions of filaments midway between clusters. The Field
Gradient class involved regions of low density and moderate

gradient, respectively, with moderate to low density, and were
associated with filaments. This is illustrated by Figure 7.

For the classes listed in Table 2, Figure 8 presents scatter plots
of the input parameters (RVoronoi/duniform versus dCM/RVoronoi) of
the SDSS, MS, and our uniform synthetic data, along with class
boundaries. The SDSS and MS data are similar, but the MS data
span a slightly larger range of gradients, dCM/RVoronoi. There
are also subtle but significant differences in the class structure.
While the SDSS and MS data sets both contained the same
classes, the Halo and Field classes in the MS data contained
more samples and occupied significantly larger regions in phase
space, while the three Gradient classes were correspondingly
smaller.

The class structure of the uniform data is noticeably different.
Even though the number of samples was similar, they occupy
a much smaller region in phase space, with a significantly
smaller range of densities and much fewer samples with large
gradients. The distribution is sufficiently uniform that the SOM/
BB technique does not identify any stable classes and places
class boundaries at arbitrary locations. The figure shows a
typical result from among the bagged samples, with a large
number of poorly defined classes that in no way resemble the
well-ordered structure observed with the SDSS and MS data.
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Figure 16. Same as Figure 14, but for the kernel density estimation (KDE) analysis of the volume-limited SDSS data. The three rows in each column show the locations
of the KDE derived structures in three different projections. Column 1: the green points are considered to be in high-density clusters and are what we consider to
constitute the KDE Cluster class, while the red are all other points. Column 2 shows the same KDE structures in a thin slice, to better visualize these results. Column
3 is the complement of Column 2: all structures not selected in the same thin slice shown in Column 2.

(A color version of this figure is available in the online journal.)

Figure 17. For the SDSS data, this figure compares high- and low-density classes from the three methods. Each of the nine sets of histograms shows the distribution
among the BB classes (horizontal axis) of those in the corresponding KDE classes (indicated on the vertical axis). The full distribution over the SOM clusters is not
shown, but in each histogram bar the SOM defined Cluster class is in green. The SOM non-cluster classes are in red.

(A color version of this figure is available in the online journal.)
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Figure 18. Also for SDSS data, and similar to Figure 17, this figure compares the high and low-density classes from the three methods. Each of the six histograms
shows the distribution among the KDE classes (horizontal axis) of those in the corresponding SOM classes (indicated on the vertical axis). The full distribution over
the BB classes is not shown, but in each histogram bar the high-density BB Cluster classes are in green. Non-high-density BB classes are in red.

(A color version of this figure is available in the online journal.)

Figure 19. Also for the SDSS data, and similar to Figure 17, this figure compares the high- and low-density classes from the three methods. Each of the six histograms
shows the distribution among the BB classes (horizontal axis) of those in the corresponding SOM classes (indicated on the vertical axis). The full distribution over the
KDE classes is not shown, but in each histogram bar the high-density KDE Cluster classes are in green. Non-high-density KDE classes are in red.

(A color version of this figure is available in the online journal.)

5. RESULTS

Comparison of the results of the three methods, for each of the
three data sets, is not entirely straightforward. We have identified
a few simple measures to quantify the differences. A future

paper will present more detailed quantitative comparisons. In
a nutshell, a description of the results of the three methods
gives insight into (1) the similarities of the SDSS and MS data
sets, (2) the stark differences between them and the uniform
distribution regardless of the structure analysis method, and (3)
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Figure 20. Similar to Figure 14, but instead the self-organizing map (SOM) analysis of the volume-limited Millennium Simulation (MS) data. The three rows in each
column show the locations of the derived block structures in three different projections. Column 1: the green points are those assigned higher densities by the SOM
algorithm (found in the SOM Cluster class), while the red are all other points. Column 2 shows the same SOM Cluster structures in a thin slice, to better visualize
these results. Column 3 is the complement of Column 2: all structures not selected in the same thin slice shown in Column 2.

(A color version of this figure is available in the online journal.)

Table 5
How Much the Different Methods Assign Galaxies (at the High-density End of the Distribution) to the Same/Different Classes

Method SDSS Millennium Simulation Uniform

SOM BB KDE SOM BB KDE SOM BB KDE

SOM Cluster class 1 1–6 2–7 1 1–10 2–10 1 · · · · · ·
BB Cluster classes 1–3 1–4 2–7a 1–3 1–3 2–9 1,6 1–4 2–4
KDE Cluster classes 1–3 1–7 1–4 1–4 1–7 1–6 2–6 2–6 1–2

Notes. Entries indicate which classes (defined by the method labeled in the second row from the top of the
columns, and for the data set indicated in the first row) are contained in the cluster class for the method indicated
in the leftmost column.
a For example, how many KDE classes are found in the BB cluster classes 1–4? In this case, KDE classes 2–7
contain BB cluster classes 1–4.

the similarities between the SOM and BB methods, and their
differences from the KDE method.

5.1. Classes: From Clusters to the Field

As discussed in Section 4.3 and demonstrated in Figure 6 the
BB method yields a series of density levels. Each level contains
one or more blocks, defined as connected sets of cells each of
which is disconnected from all other blocks in the level. The
galaxy density within a block is close to the density characteriz-

ing the level as a whole, differing only via statistical fluctuations.
Obviously blocks correspond directly to structural elements of
various densities: blocks of highest density are found in cores of
dense clusters, lowest in voids or around isolated field galaxies.
Blocks between these extremes trace the intermediate struc-
tures of the cosmic web. But since the multi-scale structure of
the galaxy distribution is characterized by quantities other than
local density, blocks do not necessarily correspond directly to
physically meaningful structural classes. For example, our way
of applying SOMs (Section 4.4) incorporates density gradient
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Figure 21. Same as Figure 20, but for the Bayesian block (BB) structure analysis of the volume-limited MS data. The three rows in each column show the locations of
the derived block structures in three different projections. Column 1: the green points are those assigned higher densities by the BB algorithm (found in the BB Cluster
class), while the red are all other points. Column 2 shows the same BB Cluster structures in a thin slice, to better visualize these results. Column 3 is the complement
of Column 2: all structures not selected in the same thin slice shown in Column 2.

(A color version of this figure is available in the online journal.)

information to generate a set of discrete structural classes (see
Figures 7 and 8) which may be more physically significant be-
cause their definitions are based on more information than just
density. Similarly, KDE incorporates non-local density infor-
mation by virtue of adaptive smoothing.

Figure 9 depicts how the galaxies are distributed among
various classes, one row for each of the three data sets.
The histograms in the first column display the distribution of
galaxies among the SOM-based classes listed in Table 2. The
other columns display, for the other two analysis methods, the
distribution of galaxies based solely on their estimated densities
in bins chosen to approximately match the resolution of the
histograms in the first column, in a way that will now be
described.

In this paper, we compare the results of the three analy-
sis methods only for galaxies in the highest density classes.
This is because they contain the most easily identifiable struc-
tures—readily identified with clusters of galaxies. More com-
plete comparisons will be presented in a later paper. Because
there is neither a one-to-one or strictly monotonic relation be-
tween the density classes uncovered by the three analysis meth-
ods we adopted the following procedure. For each of the two
non-SOM methods (BB and KDE), start from the high-density
end and include the maximum number of the corresponding

classes11 such that the total number of galaxies included does
not exceed the number of galaxies in the SOM Cluster class (ID
number 1 in Table 2). For example, in Table 3 one sees that the
SOM Cluster class contains 44,336 galaxies in the SDSS data
set. To reach a similar number of galaxies in the BB method
we utilize BB classes 1–4, which sum to 38,293 galaxies (see
Table 4).

Similarly, KDE classes 1–4 contain 18,286 galaxies.
Figures 10–12 compare the distributions of densities, indi-

rectly via histograms of Voronoi volumes, for the SDSS, MS,
and uniform random data, respectively. Each figure plots three
histograms of the Voronoi volumes of those galaxies in the SOM
selected Cluster class, and in the counterpart selections for the
BB and KDE methods as just defined. The independent variable
of these histograms is a common logarithmic binning of the
range of Voronoi volumes (labeled with bin number, not to be
confused with a class identifier). Even though the KDE method
does not use the Voronoi volumes in its calculation of density
we rely on the Voronoi volume associated with a given galaxy
for all three methods to make the volumes more comparable.
The legends for each of these three figures give the percentage

11 That is the density levels described at the end of Section 4.1 for KDE and in
Section 4.3.1 for BB.
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Figure 22. Same as Figure 20, but for the kernel density estimation (KDE) analysis of the volume-limited MS data. The three rows in each column show the locations
of the derived block structures in three different projections. Column 1: the green points are those assigned higher densities by the KDE algorithm (found in the KDE
Cluster class), while the red are all other points. Column 2 shows the same KDE Cluster structures in a thin slice, to better visualize these results. Column 3 is the
complement of Column 2: all structures not selected in the same thin slice shown in Column 2.

(A color version of this figure is available in the online journal.)

of total cluster volume versus the full volume for each data set.
These numbers also appear in Table 4.

In Figure 10, the easiest distribution to understand is that for
the BB method. Since it uses the cell-based volumes, solely and
directly, the distribution is naturally a broad lump of small (high
density) cells, with no tail of larger (low density) ones. In other
words, its levels are defined directly in terms of the volumes, as
depicted in Figure 6. Both of the other methods blend in other
non-local information—the SOM explicitly through density
gradients, and KDE implicitly via its adaptive kernel—leading
to the rather long tails to the high end of the volume distributions.
The KDE distribution resides nearly midway between the SOM
and BB ones, presumably because of its implicit blend of local
and non-local information. Nearly the same pattern as seen in
the SDSS is repeated for the MS data set in Figure 11 for each
of the methods and the cluster volume percentages. However,
for the uniform data set in Figure 12 the SOM and BB cluster
classes appear very similar in volume percentage, while the
corresponding KDE classes contain many more galaxies.

5.2. Visualizing High Density Classes

A thin spatial slice (from a fixed viewing angle) of the galaxies
found in the high density classes just described in Section 5.1,

for each method and data set, are compared side-by-side in
Figure 13.

This figure collects the view shown in the central panels of
the 3×3 plots from Figures 14–16, 20–22, and 26–28. The three
methods identify similar structures in the SDSS and MS data,
but of course not in the uniformly random data. In the bottom
row, note that the three methods select markedly different depths
of the upper end of the density distribution (cf. the right-hand
panel of Figure 3) but do not falsely reveal medium or large-scale
structure.

The remaining figures of this section elucidate clustering
associated with the highest density regions for the three analysis
methods, with sets of figures for the SDSS, the MS, and the
uniformly random data. Begin with three spatial distributions
for the SDSS data, Figures 14–16, as derived with SOM, BB,
and KDE, respectively.

The rows in Figure 14 show SOM-derived structures in
three orthogonal projections, the first column being the entire
data cube (see Figure 1 and Section 3). The green points are
galaxies in the SOM Cluster class, while red points are not.
The remaining two columns differ from the first in two ways:
they show only galaxies within thin spatial slices (delineated as
light gray bands in Column 1), and they separate the cluster and
non-cluster galaxies (displayed in gray and black, respectively,
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Figure 23. For the Millennium Simulation (MS) data, this figure compares high- and low-density classes from the three methods. Each of the 12 sets of histograms
shows the distribution among the BB classes (horizontal axis) of those in the corresponding KDE class (indicated on the vertical axis). The full distribution over the
SOM classes is not shown, but in each histogram bar the SOM defined Cluster class is in green. The SOM non-cluster classes are in red.

(A color version of this figure is available in the online journal.)

Figure 24. Also for MS data and similar to Figure 23. This figure compares high- and low-density classes from the three methods. Each of the six sets of histograms
shows the distribution among the KDE classes (horizontal axis) of those in the corresponding SOM class (indicated on the vertical axis). The full distribution over the
BB classes is not shown, but in each histogram bar the BB defined Cluster classes are in green. The BB non-cluster classes are in red.

(A color version of this figure is available in the online journal.)

in all three columns) to better reveal the structures and the
gross differences in the distributions of Cluster galaxies and
non-cluster galaxies.

Figure 15 presents the same display pattern for the BB
analysis and Figure 16 for the KDE analysis. The SOM and
BB cluster classes appear to be relatively similar, while the

KDE appears markedly different from the other two, although
some structures do appear more or less the same with all three
analysis algorithms.

Continuing the discussion of the SDSS, now turn to a
somewhat detailed look at the distribution of the galaxies over
various classes that have been defined above. The next three
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Figure 25. Also for MS data and similar to Figure 23. This figure compares high- and low-density classes from the three methods. Each of the six sets of histograms
shows the distribution among the BB classes (horizontal axis) of those in the corresponding SOM class (indicated on the vertical axis). The full distribution over the
KDE classes is not shown, but in each histogram bar the KDE defined Cluster classes are in green. The KDE non-cluster classes are in red.

(A color version of this figure is available in the online journal.)

Figure 26. Self-organizing map (SOM) analysis of the spatially uniform random distribution data. The three rows in each column show the locations of the derived
block structures in three different projections. Column 1: the green points are those assigned higher densities by the SOM algorithm (found in the SOM Cluster class),
while the red are all other points. Column 2 shows the same SOM structures in a thin slice, to better visualize these results. Column 3 is the complement of Column 2:
all structures not selected in the same thin slice shown in Column 2.

(A color version of this figure is available in the online journal.)
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Figure 27. Same as Figure 26, but for the Bayesian block (BB) analysis of the spatially uniform random distribution data. The three rows in each column show the
locations of the derived block structures in three different projections. Column 1: the green points are those assigned higher densities by the BB algorithm (found
in the BB Cluster class), while the red are all other points. Column 2 shows the same BB structures in a thin slice, to better visualize these results. Column 3 is the
complement of Column 2: all structures not selected in the same thin slice shown in Column 2.

(A color version of this figure is available in the online journal.)

plots, Figures 17–19, show histograms of the classes for the
three methods applied to the SDSS data set. Figure 17 plots the
BB classes on the x-axis and the KDE ones on the y-axis. The
number of KDE objects in a given BB class for a given KDE
class is shown in the corresponding histogram bin.

Ignoring the coloring scheme for the moment, in Figure 17
one sees a clear correlation between the density classes (indi-
cated inversely by the class number labels on the axes) in the
KDE and BB classifications. To wit, KDE class 1 through 4 ob-
jects (see Table 4) are found exclusively in BB classes 1 through
7—implying that there are no KDE class 1 through 4 objects
in BB classes 8 through 19. The coloring scheme used for the
individual histograms is intended to show how the method not
plotted on either the x- or y-axis distributes its cluster classes in
green in the other two method classes. Non-cluster classes are
in red. For example, for Figure 17 the method not plotted on the
x (BB) or y (KDE) axes is the SOM method. The SOM cluster
class is plotted in green and all other SOM classes are in red.
Most of the SOM cluster class objects show up in KDE classes
2–7 with a few in class 8. All of the SOM cluster class objects
appear in BB classes 1–10. None of the SOM cluster class ob-
jects show up in the lowest density BB classes 11–19 or KDE
class 9. Clearly, the overlap between the cluster classes of one
method and the non-cluster classes of others is not insignificant,

in accordance with the fact that the structural classifications car-
ried out by the three methods are based on different information
content.

Figures 18 and 19 are identical to Figure 17, but for the
other two combinations of variables assigned to the x- and
y-axes (in both cases including the third variable with the shown
histograms).

Having discussed the example results for the actual SDSS
data, we now present an exactly parallel set of figures for
the artificial data contained in the MS data, as described in
Section 3. The first three spatial distribution plots for MS,
Figures 20–22, are parallel to Figures 14–16, discussed above
for the SDSS data. These are followed by the class distribution
plots in Figures 23–25, parallel to those in Figures 17–19.

Having discussed the example results for the actual SDSS
data and the MS data, we now present an exactly parallel set
of figures for the artificial data contained in the uniformly and
randomly distributed data, as described in Section 3.

The first three spatial distribution plots for the uniformly ran-
dom data Figures 26–28 are parallel to Figures 14–16 discussed
above for the SDSS data, and Figures 20–22 discussed above
for the MS data. These are followed by the class distribution
plots in Figures 29–31, parallel to those in Figures 23–25, and
Figures 17–19.
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Figure 28. Same as Figure 26, but for the kernel density estimation (KDE) analysis of the spatially uniform random distribution data. The three rows in each column
show the locations of the derived block structures in three different projections. Column 1: the green points are those assigned higher densities by the KDE algorithm
(found in the KDE Cluster class), while the red are all other points. Column 2 shows the same KDE high-density structures in a thin slice, to better visualize these
results. Column 3 is the complement of Column 2: all structures not selected in the same thin slice shown in Column 2.

(A color version of this figure is available in the online journal.)

In all cases, there is very little evidence of clustering in the
uniformly distributed points, exactly as one would expect. The
average densities are again very similar for the BB and SOM.
The KDE appears to select more galaxies for its cluster class,
while explicitly avoiding the majority of galaxies at the border;
this odd behavior was not demonstrated in the other data sets,
but is likely just an edge effect that could easily be removed.

Table 5 distills the cluster class overlap between methods into
a single table as shown in Figures 17–19, 23–25, and 29–31. For
the most part these summaries for the SDSS and MS cases are
more alike than not, whereas those for the uniformly random
case are very different. It is clear that all three algorithms assign
high-density regions to classes in somewhat different ways, just
as one would expect.

6. SUMMARY AND CONCLUSIONS

We have described two techniques newly applied to character-
ize structures in large three-dimensional galaxy surveys based
on Voronoi tessellation—BB and SOM. These two new tech-
niques were compared with a third well-known technique called
KDE.

The techniques were applied to three example data sets. The
first was a VL subsample of the SDSS Data Release 7. The
second was a VL subsample of the MS, while the third was a
uniform randomized set of points similar in size to the other

two. The BB and SOM methods were proven to pick similar
high-density structures from the SDSS and MS data sets. The
KDE method generally gives rather different results, although
it was able to identify some of the same high-density structures.
The uniform randomized sample proved to be a challenge to
all three techniques’ ability to discern statistically significant
high-density concentrations—as it should have, since they do
not exist.

In future publications, we plan to provide more details on
the analysis previewed here, including preparation of an all-
scale structure catalog (distinguishing from the term LSS). Our
catalog will include features unique to our analysis approach,
such as:

1. internal comparison between structures which have been
found using two different analysis methods, but which
can be reliably identified as comprising the same physical
structure, say based on spatial coincidence;

2. measures of convexity/concavity and their distributions;
3. the sizes and directions of tri-axial ellipsoids fit to the

blocks; and
4. other morphological quantities.

This will allow us to further compare our SOM and BB
analysis on the SDSS data with other workers’ results including
catalogs of clusters, sheets (walls), filaments, voids, etc.
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Figure 29. For the spatially uniform random distribution data, this figure compares high- and low-density classes from the three methods. Each of the six sets of
histograms shows the distribution among the BB classes (horizontal axis) of those in the corresponding KDE class (indicated on the vertical axis). The full distribution
over the SOM classes is not shown, but in each histogram bar the SOM defined Cluster class is in green. The SOM non-cluster classes are in red.

(A color version of this figure is available in the online journal.)

Figure 30. Also for spatially uniform random distribution data, and similar to Figure 29, this figure compares high and low-density classes from the three methods.
Each of the eight sets of histograms shows the distribution among the SOM classes (horizontal axis) of those in the corresponding KDE class (indicated on the vertical
axis). The full distribution over the BB classes is not shown, but in each histogram bar the BB defined Cluster classes are in green. The BB non-cluster classes are in
red.

(A color version of this figure is available in the online journal.)

Certainly the reader may be skeptical of any one of the three
methods abilities to distinguish between similar structures in
SDSS redshift data such as Fingers-of-God and line-of-sight

filaments. However, given our ability to obtain the “ground
truth” from the original MS positions (x, y, z) and velocities
(Vx, Vy, Vz) we believe that it will be possible to characterize
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Figure 31. Also for the spatially uniform random distribution data, and similar to Figure 29, this figure compares high- and low-density classes from the three methods.
Each of the eight sets of histograms shows the distribution among the BB classes (horizontal axis) of those in the corresponding SOM class (indicated on the vertical
axis). The full distribution over the KDE classes is not shown, but in each histogram bar the KDE defined Cluster classes are in green. The KDE non-cluster classes
are in red.

(A color version of this figure is available in the online journal.)

Table 6
Attributes

u, g, r, i, z Apparent magnitudes from the SDSS DR7
U,G,R, I, Z Absolute magnitudes from the SDSS DR7
z, zerr Redshift and the uncertainty in redshift
duniform Average spacing between points for a uniform distribution
d1–6 Distances in units of z to the six nearest neighbors
RVoronoi (Voronoi volume)1/3 in units of z. A measure of local density
dCM Distance in z from a galaxy to the CM of its Voronoi cell
RMax Maximum distance from the point to a vertex of the Voronoi cell
RMin Minimum distance from the point to a vertex of the Voronoi cell
RVoronoi/dUniform A dimensionless measure of local density
RMax/dUniform A dimensionless measure of RMax

RMin/dUniform A dimensionless measure of RMin

dCM/RVoronoi A dimensionless measure of the local gradient
“Elongation” A simple dimensionless measure of the elongation of a Voronoi cell

and distinguish structures that mimic each other in SDSS type
data sets.
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This research has also utilized the viewpoints (Gazis et al.
2010) software package.

APPENDIX A

SDSS CASJOBS QUERY

Select p.ObjID, p.ra, p.dec, p.dered_u, p.dered_g, p.dered_r,
p.dered_i, p.dered_z, p.Err_u, p.Err_g, p.Err_r, p.Err_i, p.Err_z,
s.z, s.zErr, s.zConf FROM SpecOBJall s, PhotoObjall p
WHERE s.specobjid=p.specobjid and s.zConf>0.95 and
s.zWarning=0 and(p.primtarget & 0x00000040 > 0) and(((flags
& 0x8) = 0) and ((flags & 0x2) = 0) and ((flags &
0x40000) = 0))

APPENDIX B

CATALOG ATTRIBUTES

A unified set of attributes for each galaxy is described in
Table 6.
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